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ABSTRACT 

We consider different hierarchical menu and toolbar-like 
interface designs from a theoretical perspective and show 
how a model based on visual search time, pointing time, 
decision time and expertise development can assist in 
understanding and predicting interaction performance. 
Three hierarchical menus designs are modelled – a 
traditional pull-down menu, a pie menu and a novel Square 
Menu with its items arranged in a grid – and the predictions 
are validated in an empirical study. The model correctly 
predicts the relative performance of the designs – both the 
eventual dominance of Square Menus compared to 
traditional and pie designs and a performance crossover as 
users gain experience. Our work shows the value of 
modelling in HCI design, provides new insights about 
performance with different hierarchical menu designs, and 
demonstrates a new high-performance menu type.  
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INTRODUCTION 

User interface designers have many alternatives for 
providing access to commands in their systems. Menus and 
toolbars are primary mechanisms for selecting commands, 
and consequently researchers have proposed many designs 
to improve their performance: traditional menus use a linear 
item organisation, while toolbars use two-dimensional 
layouts; the ‘Ribbon’ interface (MS Office 2007) combines 
these two approaches (Figure 1); and radial ‘pie’ menus 
further extend the range of alternatives available to 
designers. While these alternatives provide designers with 
the flexibility to best match their users’ needs, they also 

complicate the design process because it is hard to predict 
how different alternatives will perform. Would traditional 
menus, toolbars, pie menus or ribbons be fastest, and is 
comparative performance influenced by user experience, 
the structural layout of the menus, or by the hierarchical 
organisation? Designers are most likely to answer these 
questions using intuition or with empirical tests. However 
intuitions can often be wrong, and the time-consuming 
nature of empiricism limits the range of alternatives that 
can be considered. Theoretical performance models, in 
contrast, can be quickly and easily deployed. 

 

Figure 1. The ‘Ribbon’ replaces menus with tabbed toolbars. 

A recent model of menu selection time [14], called the 
Search, Decision and Pointing (SDP) model, provides a 
synthesis and extension to Card et al.’s [11] seminal work 
on Keystroke Level Models. It predicts performance based 
on the time needed to either search or decide about an item, 
followed by the pointing time needed to select it. SDP 
proposes that novices rely on visual search to find targets (a 
linear function of the number of items) while experts can 
decide about their location (a logarithmic function, based 
on the Hick-Hyman Law of choice reaction time [22, 24]). 
The model therefore accounts for novice-to-expert 
transitions with different designs as users learn item 
locations. Although the model is promising, it is limited in 
that it has only been applied to linear menus (where items 
are below one another) and it has not been tested with menu 
hierarchies.  

In this paper, we test the SDP model with hierarchical 
menus and apply it to a broader range of menu behaviours 
than previously investigated. We extract a crucial 
performance principle from the model – that experts spend 
proportionally far more time in the pointing phase of menu 
selection than novices. This suggests that menu designs for 
experts should focus on reducing pointing time. Using this 
principle, we identify two candidate designs that should 
perform well: radial pie menus, which have rapid but 
unusual pointing properties; and a novel menu type called 
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Figure 2. A hierarchical pie menu, as used in Experiment 2. 

Square Menus that we designed to reduce pointing time 
without dramatically altering the shape of the menus. 

We used the SDP model to predict performance with 
hierarchical pie, Square, and traditional linear menus. After 
calibrating the models, our predictions indicated that Square 
Menus would perform best for experts, and that there would 
be a performance crossover between these designs and 
traditional menus as users became more familiar with the 
menu items. An empirical validation study confirmed both 
of these predictions: Square Menus were significantly faster 
for experts than either traditional or pie menus, and the 
initial advantage for traditional menus disappeared by the 
second block of trials. In addition, our studies identify 
performance characteristics of pie menus that have not 
previously been reported (despite the long history of 
research into this design). 

Our paper makes five specific contributions: 

• Testing the SDP model with hierarchical menus; 

• Demonstration of the model’s value in creating new 
designs and comparing different approaches; 

• Introduction of the novel Square Menus design; 

• New performance characteristics of radial pointing; 

• Empirical evidence that Square Menus are significantly 
faster than pie and traditional menus. 

Our experiences show that performance models can have 
value both in helping designers understand underlying 
principles of performance and in helping them identify and 
compare different design alternatives. 

RELATED WORK 

Menu Designs 

There has been extensive research on improving interaction 
with menus. In general, there are four underlying objectives 
for the improvements, reviewed below: reducing Fitts’ Law 
[17] target acquisition time, aiding target identification, 
reducing Steering Law [1] time in hierarchical menus, and 
improving menu shortcuts. Many of these techniques draw 
on the non-uniform nature of command use (i.e., a few 
commands are used often, and many are seldom or never 
used [15, 18, 20]). 

Reducing Fitts’ Law target acquisition time  

Fitts’ Law [17] is a robust rule of human movement, 
predicting that movement time (MT) of a limb (or cursor) to 
a target follows the formula MT = a + b × log2(A / W + 1), 
where A is the movement distance, W is the target width, 
and a and b are empirically determined intercept and slope 
constants. The logarithmic term is called the movement 
‘index of difficulty’. Much research in HCI has been 
focused on reducing pointing time in various contexts (see 
[6] for a review), including menus.  

Split menus [32] are widely used in commercial software. 
They reduce target distance for the most frequently or 
recently used items by moving or copying them into a 

special region at the top of the menu. Studies have shown 
that frequency-based split menus provide greater menu 
stability and therefore better support users in developing 
expertise [14] than recency-based split menus. However, 
the overall merit of splits is not clear, and some 
unfavourable experimental results have been seen [14, 15]. 

Instead of reducing pointing distance, morphing menus [14] 
increase the width of frequently used items. Like split 
menus, their performance benefits over traditional menus is 
not established. Bubbling menus [36] also increase the 
effective target width of frequent items, but do so by 
changing cursor size. This introduces the need for a mode 
partition, with one menu side disabling bubbles to allow 
selection of infrequent items, while the other side enables 
the bubble cursor. Experiments suggest that Bubbling 
menus are effective in hierarchical menu selections [36]. 

Radial ‘pie’ menus [9] and gestural marking menus [26, 27] 
arrange targets in a circular layout around the cursor (see 
Figure 2). Targets are selected by dragging in their 
direction. They offer several interaction benefits: all targets 
are accessible with only a small cursor movement, and 
items can be selected with rapid gestures before the menu is 
displayed. Many studies have evaluated various forms of 
radial menus and proposed iterative refinements. Callahan 
et al. [9] demonstrated that error rates with pie menus 
remain low with fewer than eight items per menu, and 
Kurtenbach and Buxton [26] showed that users can achieve 
better than 90% accuracy using compound gestural strokes 
to navigate through two-level hierarchies of 64 items. 
Several radial command systems allow broader structures 
by attending to the position and orientation of strokes [38] 
or their curvature [4]. Finally, radial Wave menus [5] use 
expanding concentric circles to aid novices. 

The empirical and design work on radial menus is 
impressive, providing rich characterisations of use. 
Surprisingly, however, there has been no direct 
performance comparison between hierarchical pie menus 
and the traditional ones used in current systems.  

Steering Law time in hierarchical menus 

The Steering Law [1] predicts that the time to move the 
cursor through a constrained movement ‘tunnel’ is a linear 
function of the ratio of tunnel length to width. Steering is 
pertinent in many hierarchical menu selections that involve 
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moving to a particular cascading menu item, then 
accurately steering across it to enter a lower level menu. 

Several techniques have tried to improve performance by 
reducing horizontal steering distance. Kobayashi and 
Igarashi [25] describe a technique that reduces the 
horizontal tunnel length by posting cascading menus under 
the cursor when the user begins to drag across the menu. 
Their study showed performance improvement over 
traditional menus. Ahlström et al. [3] described two 
techniques that effectively reduce steering distance through 
cursor warping: ‘Jumping’ menus instantaneously warp the 
cursor into the middle of the hierarchical menu when the 
parent is clicked, while ‘Force enhanced’ menus gradually 
displace the cursor towards cascades. Both techniques 
improved selection times, although Jumping menus caused 
many more errors.  

Another approach is to increase the width of the steering 
tunnel. EMUs [12] enlarge the activation area that triggers 
cascade menu posting, reducing both the need for sharp 
corners in the cursor trajectory and the need for menu 
posting/unposting timeout delays. Adaptive activation area 
menus [34] are shown to improve on this approach by 
dynamically calculating an enlarged activation area that 
contains the triangular region from the cursor’s location to 
the start and end of the next level menu.  

Improving menu target identification 

Several menu systems have investigated methods that help 
users lock on to targets. Findlater et al. [16] introduced 
‘ephemeral adaptation’, which immediately displays 
probable menu targets, while slightly delaying and fading in 
other items. Results showed that the technique improved 
performance over traditional menus and colour highlighting 
by successfully capitalising on human factors of visual 
processing, in which items with abrupt onset are processed 
first. Other researchers have examined audio [38] and 
haptic feedback [31] to help users identify targets when 
their visual attention is directed elsewhere. 

Improving menu shortcuts 

Finally, researchers have improved methods for issuing and 
recalling menu shortcuts. Marking menus support a natural 
transition from novice to expert performance by allowing 
novices to visually scan contents, while experts use rapid 
directional gestures [26, 27]. Grossman et al. [19] devised 
methods to promote the use and retention of keyboard 
shortcuts, with good results. 

Menu Models  

In addition to the strong empirical and design work on 
menus, a variety of theories have been proposed to model 
menu use. Novices’ visual search for menu items has been 
modelled as traversing over candidate items randomly [10], 
linearly [8, 23, 29], and in parallel [23], but eye tracking 
data support a predominantly top-to-bottom search [8] in 
support of a ‘maximally efficient foveal sweep’ [23]. 

Several studies agree that novices’ search time is a linear 
function of menu length [14, 23, 32]. Expert menu use has 
been modelled in many ways, including Fitts/Steering Law 
[2, 33], KLM [28], GOMS and ACT-R [7, 33], and 
Huffman codes [35]. Our focus, however, is on the recent 
‘Search, Decision and Pointing’ model [14] of novice and 

expert use.  

The Search, Decision, and Pointing (SDP) Model 

The SDP model [14] integrates several low level models to 
form performance predictions with single level linear 
menus (where items are shown in a single vertical column) 
across experience levels, summarised below. 

The average time Tavg to select items in a menu is calculated 
as the probabilistic sum of times for its constituent entries 
(where pi is the probability of item i): 

 Tavg = pi
i=1

n

∑ Ti  (1) 

Item selection time Ti is calculated as the sum of the two 
sub-tasks that involve first finding the item (Tdsi) and then 
acquiring it (Tpi).  

 Ti = Tdsi +Tpi  (2) 

For menus using traditional cursor movement for target 
acquisition, pointing time Tpi is calculated with Fitts’ Law: 

 Tpi = ap + bp log2 Ai /W i +1( ) (3) 

Unusual designs, however, such as radial pointing, may 
have different pointing characteristics (see Experiment 1). 

The time to find the item (Tdsi) depends on the user’s level 
of expertise (ei from 0 to 1): novices visually search, 
experts decide about location, and intermediates do some of 
both: 

 Tdsi = 1− ei( )Tvsi + eiThhi  (4) 

Visual search time (Tvsi) is a linear function of menu length 
(n), where avs and bvs are empirically derived intercept and 
slope values: 

 vsvsvsi anbT +=  (5) 

Expert decision time (Thhi) is calculated using the Hick-
Hyman Law of choice reaction time, where ahhi and bhhi are 
empirically-derived intercept and slope constants, and H is 
termed the information entropy of the decision: 

 Thhi = bhhH + ahh , where )/1(log2 ipH =  (6) 

Item expertise (ei) is calculated as a power law of practice 
[30] dependent on previous experience selecting the item 
(trials, ti) and on interface learnability (L, from 0 to 1):  

 ei = L × 1−1 t( i) (7) 

A menu’s learnability depends on its spatial stability – 
designs that frequently move items (e.g., split menus that 
move items rather than copy them) will hinder users’ ability 
to learn locations. 

Although this series of equations may appear unwieldy, 
they are very simply implemented in a spreadsheet. In a 
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Figure 4. A hierarchical Square Menu. 

spatially stable interface design, the only parameters that 
require calibration are the a and b constants for Fitts’ Law, 
visual search, and decision in Equations 3, 5, and 6. 

SDP can be used for hierarchical or multilevel predictions 
(MLi) by summing individual level times and including a 
‘steering cost’ sci for traversing from one menu level to the 
next (e.g., to a menu cascade). 

 MLi = (T j
j=1

l−1

∑ + sc j ) +Tl  (8) 

A variant of the SDP model has been used to predict 
hierarchical navigation in scrolling lists (such as file 
browsers) [13], but it has not been used with non-linear 
interfaces such as radial menus, toolbars, or ribbons.  

PERFORMANCE PRINCIPLES SUGGESTED BY SDP  

Analysis of the SDP model suggests that performance is 
governed by two main principles: the time to visually scan 
for an item of interest, and the time to point to it. The model 
also shows that the relative importance of these two tasks is 
different for novices and experts. In particular, SDP 
suggests that novices spend more than half of target 
selection time visually searching for items, while experts 
spend most time on the motor aspects of acquisition. Figure 
3 shows the predicted percentage of selection time 
dedicated to pointing (Tp) by novices and experts in single-
level traditional menus across various menu sizes, using 
parameters reported in [14] – the remaining time is 
dedicated to search and decision (Tdsi). Search aids such as 
Ephemeral Adaption’s [16] pre-attentive stimuli will be 
proportionately more valuable for novice users, while 
pointing improvements apply throughout the user’s 
transition from novice to expert performance, and are 
particularly valuable (proportionately) for expert users.  
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Figure 3. Predictions of the percentage of selection time spent 

pointing for novices and experts, by menu length. 

MENU DESIGNS FOR MINIMIZING POINTING TIME 

We identified two types of menus that are likely to perform 
well given the principles identified above: pie menus, 
which have been extensively studied (discussed above with 
Related Work), and Square Menus, a novel type that we 
designed to improve pointing performance while retaining a 
rectilinear format. 

Square Menus 

We designed a new type of menu called Square Menus 
(Figure 4) to minimize pointing time for experts, while 

retaining the basic rectilinear layout of traditional menus. 
Square Menus arrange menu items in a square (or nearly 
square) grid, similar in some ways to Microsoft’s ‘Ribbon’ 
toolbars or the Mac OS X ‘file stack.’ If a menu level 
contains n items then the horizontal and vertical grid size is 
the ceiling of the square root of n, with blank items in the 
lower right region as necessary. Cascading submenus are 
accessed by clicking in a parent item. Since submenus can 
obscure part of the parent menu, they can be explicitly 
dismissed either by moving out of the submenu, right 
clicking, or pressing Escape (as with traditional menus).  

Square Menus reduce Fitts’ Law pointing time compared 
with traditional linear menus. Figure 5 shows a comparison 
of the theoretical average pointing times (Tp) with Square 
Menus and traditional linear menus of various lengths.  
The predictions use Fitts’ Law calibration parameters of 
a = 0.37 seconds and b = 0.13 seconds/bit from [14]. The 
figure shows increasing benefits for Square Menus as menu 
size increases. The predictions do not change with menu 
item size since Fitts’ Law ID concerns the ratio of distance 
to width, which is scale independent. 

Pie and Square Menus have theoretical characteristics that 
fit the performance principles suggested by the SDP model. 
Our next steps were to build predictive models for the two 
designs (and for traditional linear menus as a control), and 
then empirically validate the predictions. 
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Figure 5. Pointing time for traditional and Square Menus.  

EXPERIMENT 1 – MODEL CALIBRATION 

The goal of the model is to predict novice and expert 
performance with various types of hierarchical menus. 
Calculating predictions requires that intercept and slope 
parameters be calibrated for Fitts’ Law pointing (Equation 
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3), visual search (Equation 5), and Hick-Hyman decision 
(Equation 6). Some of these parameters will be the same for 
different interfaces, as they involve similar or identical 
interaction mechanics. For example, pointing requirements 
with traditional menus and Square Menus are similar – the 
user moves the cursor as normal in either case – so the same 
Fitts’ Law parameters can be used. Sometimes, however, 
the mechanics are clearly different, demanding calibration: 
for example, it is unclear how pointing time increases with 
the number of items in a pie menu. We therefore ran an 
experiment to calibrate the following model parameters: 

Pointing time in pie menus. Given their prominence in 
research studies, surprisingly little is known about how 
users interact with pie menus. When pointing to an item in a 
pie menu, the user only controls cursor direction (in 
contrast to direction and magnitude of movement in 
traditional pointing). Is selection time therefore related to 
the number of items, and if so, how (linearly, 
logarithmically, or other)? How far do users move the 
cursor as the number of items increases? In calibrating Tp 

for pie menus, we are primarily interested in the 
relationship between the number of items and pointing 
time, but the experiment also allows us to characterise other 
facets of radial pointing that have not been reported in prior 
research. 

Visual search time for Square Menus and pie menus. There 
is extensive literature on visual search (see [31] for a 
review), but it is unclear how sequential visual search times 
are influenced by target layout (e.g., items arranged in a 
grid or circle). We therefore calibrated visual search 
parameters for Square and pie layouts to determine whether 
they differ from traditional menus. Traditional search times 
were extracted from [14], which used a very similar 
procedure to ours.  

Apparatus and Participants 

The experiment ran on a Windows XP PC with a 22-inch 

LCD monitor at 1680×1050 resolution and a conventional 
optical mouse. Twelve volunteer undergraduate students 
(three female) aged 21 to 39 years (mean 26.4 years, SD 
6.0) participated in the experiment. All used computers 
daily. Participation lasted approximately 35 minutes.  

Method 

All participants completed four experimental phases: a 
Fitts’ Law calibration phase for traditional pointing, a 
pointing calibration phase for pie menus, a visual search 
phase with pie menus, and a visual search phase with 
Square Menus. The first two phases were always completed 
in this order, but the third and fourth phases were 
counterbalanced to mitigate learning and fatigue effects. 
Participants were instructed to complete trials as quickly 
and accurately as possible. Identical fonts were used to 
label items in all conditions.  

Fitts’ Law calibration. Estimating visual search times 
requires subtracting pointing time from the total time to 
find and select an item. We therefore need to know pointing 
time for each participant, and consequently they completed 
a rapid Fitts’ Law calibration phase involving six ID values 
(from 2.25 to 5.2 bits) constructed from two target sizes (22 
and 80 pixels, representing the height of traditional and 
Square Menu items) and three distances (300, 550, and 800 
pixels). Each trial consisted of moving vertically downward 
from a ‘start’ button to a square green target. Participants 
were instructed to click the ‘start’ button to display the 
target and not to move the cursor until they had visually 
acquired the target. Trial time only started as the cursor left 
the start button (and ended with a click in the target) thus 
visual search time was excluded. There were a total of 30 
trials, consisting of five blocks, with one trial of each ID 
occurring once in a random order in each block.  

Pie menu pointing calibration. Participants completed 168 
pointing trials with pie menus, using seven menu sizes in a 
random order (2, 4, 9, 16, 25, 36, and 49 items), each with 
six blocks of four trials (one in each pie quadrant, or two 
selections in each half for two-item menus). The pie menu 
diameter increased with the number of items (101 pixels 
diameter for two items, to 981 pixels for 49 items). Each 
trial proceeded as follows. Initially a blank pie menu with 
the correct number of items (but no labels) was posted to 
the screen centre, and the cursor was locked by continually 
warping it to the menu centre. After 600ms, the target was 
identified by showing a numerical label inside it, and the 
cursor was unlocked. Highlighting provided feedback of the 
item under the cursor. Pointing time was measured between 
the first movement and the selection.  

Visual search in pie menus. Participants completed 30 trials 
(ten blocks, and three items per block, with one item 
randomly located in each third of the menu) with each of 
five pie menu sizes in random order: 4, 9, 16, 25 and 36 
items. The menus were populated with names of countries, 
capitals and US states (5-7 characters in length). Each timed 
trial began by clicking a button, which displayed the menu 
and showed the target name immediately above it. Selecting 
an item completed the trial whether correct or not. An 
incorrect selection added an additional trial, so all 
participants produced data for 150 correct selections (30 
trials × 5 menu sizes). Visual search time is calculated by 
subtracting pointing time (based on each person’s Fitts’ 
Law regression parameters) from the total selection time.  

Visual search in Square Menus. This phase used the same 
procedure as visual search in pie menus. Menu item size 
was arbitrarily set at 80×80 pixels, and the target cue was 
shown alongside the button used to post the menu.  

Each of the twelve participants completed 498 trials (30 
Fitts, 168 pie pointing, 150 pie visual search, and 150 
Square Menu visual search), giving 5976 trials in total.  
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Results 

Table 1 summarises the results of linear regression models 
for pointing, visual search, and Hick-Hyman decision time 
(values for traditional menus and Hick-Hyman parameters 
are from [14]). All regression models are extremely good 
(R2 

> 0.97).  

 Traditional Square Pie 
 a b  a b  a b  
Pointing 0.13+ 0.15×ID 0.13+ 0.15× ID 0.32+ 0.014× n 

R
2
 0.976 0.976 0.997 

Vis. srch 0.3+ 0.08×n 0.32+ 0.12× n 0.40+ 0.12× n 
R

2
 0.99 0.997 0.999 

Hk-Hym. 0.24+ 0.08×H 0.24+ 0.08× H 0.24+ 0.08× H 

Table 1. Calibration parameters from Experiment 1. n is 

number of items. H is information entropy (see Equation 6). 

Characterisation of radial pointing 

Figure 6 shows that radial pointing time in pie menus 
increases linearly with the number of items (R2 

= 0.997). 
This is an interesting result that warrants further 
investigation because Fitts’ Law predicts the logarithmic 
relationship shown (Figure 6). The Fitts’ prediction is 
calculated using a and b values from [14], and taking W to 
be the width of the pie slice at a distance D from the pie 
centre (we use the smaller of the area’s two dimensions for 
W). The ID is then calculated as log2(1/(2tan(360/2n))+1). 
We are unaware of prior research showing this relationship. 
Experimental logs also show that the Euclidean cursor 
movement distance from the menu centre to the selection 
point increases linearly with the number of items, from 11 
pixels with 2 items, to 94 pixels with 49 items (R2 

= 0.98), 
confirming that users move farther when there are more 
items. Note, however, that our experimental method 
increased diameter with n, so movement distance could be a 
factor of diameter as well as (or instead of) n. 

Distance = 1.79n + 8.91

R2 = 0.976

Empirical Time =14.18n + 316.3

R
2
 = 0.997

0

200

400

600

800

1000

1200

0 5 10 15 20 25 30 35 40 45 50

Number of items

M
e
a
n
 m

o
v
e
m
e
n
t 
ti
m
e
 (
m
s
e
c
)

0

20

40

60

80

100

120

M
e
a
n
 m

o
v
e
m
e
n
t 
d
is
ta
n
c
e
 (
p
ix
e
ls
)

Empirical time
Fitts Prediction
Distance

 
Figure 6. Mean time and distance for pie menu movements. 

Observations on visual search 

Visual search times increased linearly with the number of 
items in both Square and pie menus (R2 

= 0.997 and 0.999 

respectively). Regression models are similar across the 
three menu types. Traditional menus offer a slight 
advantage, which is probably due to their simple and 
straight visual scan paths, the close proximity of items, and 
the participants’ greater familiarity with the layout.  

Surprisingly, there is little evidence that pie menu errors 
increase with the number of items (R2 

= 0.14). Furthermore, 
the total number of errors is identical with Square and Pie 
menus (1.6% error rate). Unlike gestural marking menus, 
which have been shown to suffer high error rates with more 
than eight items [27], pie menu users can maintain accurate 
selections by attending to feedback and moving further to 
give a larger target area. 

EXPERIMENT TWO – TESTING THE MODEL 

The second experiment tests the accuracy of the model’s 
predictions for hierarchical menu selection performance 
with the three interfaces, as users gain expertise.  

Method 

Apparatus and Participants. The apparatus was identical to 
experiment one. Twenty-four undergraduate students (six 
female) aged 19 to 49 years (mean 29.1 years, SD 8.3) took 
part in the experiment. All used computers daily. None 
were participants in experiment one.  

Traditional menu items were 120×22 pixels; square menu 
items were 80×80 pixels; 12- and 16-item pie menus were 
301 and 411 pixels in diameter. 

Task Data. The menu hierarchies used in the experiment 
consisted of sixteen countries at the first level, up to sixteen 
cities at the second, and up to twelve suburbs at the third. 
Exactly the same structure was used with all three 
interfaces, but the structures were populated with different 
data. Identical structures are rendered entirely differently in 
the three interfaces, making it unlikely that participants 
would notice the reuse or profit from it.  

Procedure and Design. All participants completed ten 
familiarisation trials, then eight blocks of experimental 
trials with all three menu systems (order balanced using a 
Latin square). Each block reused the same six targets in a 
random order, allowing participants to gain experience. 
Two targets occurred in a second level menu (e.g., 
“Chile�Santiago”), and four occurred in a third level sub-
submenu (e.g., “France�Paris�Olympia”). The top level 
menu contained sixteen countries, twelve of which had 
associated submenus. Second level targets always occurred 
in submenus containing twelve items, and third level targets 
always occurred by navigating through a submenu of 
twelve to a sub-submenu of sixteen. The six targets 
occurred in the same structural position for all participants 
in all conditions, as follows: (6, 4), (9, 10), (3, 3, 15), (7, 6, 
3), (11, 9, 8), and (14, 11, 11), where the tuples represent 
locations in the first, second and third levels. Entirely 
different sets of countries and places were used with each 
interface. A click in a ‘Menu’ button posted the first menu 
level, displayed the target path and started timing. A mouse 
button release inside a parent item (or after a dwell time of 
333ms in the traditional menu) posted submenus. Timing 
ended when the mouse button was released inside a non-
parent item. An incorrect selection added an additional trial. 
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Figure 7. Predicted (left) and empirical (right) results for the three interfaces. Error bars show ± 2 SE. 

We gathered data from 3456 correct trials: 24 participants × 
3 interfaces × 8 blocks × 6 targets. All data from one 
participant was discarded as it accounted for 29 of 52 
outlier trials (more than 3 SD from the mean). 

Predicting Performance with the Calibrated Model 

The calibrated parameters shown in Table 1 were used in a 
simple spreadsheet to predict performance for these 
experimental tasks. Visual search parameters for linear 
menus were extracted from [14], as were Hick-Hyman 
decision time parameters. We treat each menu level as a 
separate Hick-Hyman decision: for example, first deciding 
about the location of “Canada”, then “Toronto”, and then 
“Bolton”. The probability associated with each decision is 
1/16 (the reciprocal of the number of selections in each 
block). It is possible, however, that users actually retrieve 
the full hierarchic structure from memory in one process, 
causing us to overestimate decision times. We revisit this 
issue in the discussion. Finally, the steering cost for 
hierarchical items in traditional menus is calculated by 
adding the horizontal traversal distance between the centre 
of the parent item and the horizontal centre of its submenu 
to the total movement amplitude for the cascading item. 
The predictions across eight trial blocks are shown in 
Figure 7. 

Results 

We divide our results into five sections: the comparison 
between predicted and empirical results (to test the model); 
comparison of the menu designs themselves; analysis of 
cumulative times through the hierarchy; data concerning the 
low predictions; and participant comments. 

Results 1: Testing the model 

Figure 7 (left) shows the model’s predictions of mean target 
selection time for the three interfaces, and the empirical 
results (right). Linear regression of predicted versus 
empirical data gives R2

 values of 0.96, 0.93 and 0.92 for the 
Square, traditional and pie menus respectively.  

There are two aspects of the predictions that we evaluate 
below – the relative and the absolute accuracy. 

First, the model performs well in predicting the relative 
performance of the three menu designs. In particular, it 
correctly predicts four characteristics of the data: 

• The order of the designs for novice usage. The model 
correctly predicted the order of the menu designs in block 
one – that pie menus would be slowest, traditional menus 
fastest, and Square Menus in between. 

• The order of the designs across blocks. The model also 
correctly predicted the order of the designs once 
participants were familiar with the items – Square fastest, 
and pie and traditional menus very close together, but 
with pie slightly faster. 

• The crossover with increasing expertise. The model 
correctly showed that there would be a crossover between 
traditional and Square Menus at about block two, and that 
performance of pie and traditional menus would meet at 
about block five.  

• The overall shape of the curve. The model predicted a 
power-law learning effect for all three menu designs, and 
this is confirmed (although with more noise than 
predicted) in the empirical data.  

Second, in terms of absolute accuracy, Figure 7 shows that 
the model underestimates completion times by 
approximately one second. We discuss possible reasons for 
this underestimation in Results 4, but we note here that this 
absolute error is something that can be improved in future 
refinements to the model. 

Results 2: Empirical Comparison of the Designs 

We are also interested in the empirical comparison of the 
three menu designs – that is, whether any of the menus is 
significantly faster than the others. We carried out a 3×8 
ANOVA to test the effects of menu design and block on 
selection time. The test showed a significant main effect of 
menu design (F2,44 = 17.45, p < 0.001), with Square fastest 
at 5.14 seconds, then traditional (5.45 seconds), and pie 
(6.04 seconds).  

As anticipated, there was a significant effect of block  
(F7,154 = 63.49, p < 0.001). There was also a significant 
interface×block interaction (F14,308 = 5.92, p < 0.001), 
caused by the cross-over effect of interface performance 
with experience (Figure 7).  

To investigate the interaction, we carried out a second 
ANOVA using only the final three blocks (i.e., those where 
participants were most experienced). We again found a 
significant main effect of menu design (F2,44 = 10.18, 
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p < 0.001), with means of 4.39s (Square), 5.04s 
(traditional), and 5.16s (pie). A post-hoc Bonferroni test 
showed that Square Menus were significantly faster than 
either traditional or pie menus (p < 0.01); there was no 
significant difference between traditional and pie (p = 0.1). 

Results 3: Cumulative times at hierarchical levels 

Figure 8 shows predicted and empirical cumulative times 
through hierarchical levels with the three interfaces. Time 
measures at each level are taken when either a non-parent 
item at that level is selected (with a mouse button release) 
or when the submenu is posted by a mouse button press in 
its parent item (or for the traditional menu, after the dwell 
timeout). It shows that the empirical data is higher than 
predicted for the first level, but relatively consistent with 
predictions for the remaining levels. The mean prediction 
errors at the first, second, and third levels are 45, 30 and 
19% respectively.  
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Figure 8. Predicted and empirical cumulative times at the 1st, 

2nd, and 3rd hierarchical levels with the three interfaces. 

Results 4: Underestimation of absolute selection times 

Although the model successfully predicts important 
performance trends (such as the performance crossover 
with experience), it underestimates task times (at worst by 
34% for pie menus in block 6). While this is an obvious 
weakness, we believe it can be readily explained.  

Figure 8 shows that the discrepancy arises primarily at the 
first hierarchical level. This is best explained by differences 
in reading and interpreting the target cue during calibration 
and experiment two. Calibration tasks involved reading a 
one word cue, finding that word/item, and clicking on it. 
The cues used in experiment two, however, were much 
longer, involving three strings (such as “South 
Africa�Durban�Sunnyhills”). Reading, processing, and 
memorizing these multi-part hierarchical cues is much 
harder than in the calibration experiment, and results in 
slower than predicted performance. Importantly for the 
success of the model, this difference is an artifact of our 
experimental method, and not an artifact of the underlying 
interaction that we wish to understand.  

A secondary cause of the discrepancy for the traditional 
menu arises from participants waiting for dwell timeouts to 
expire rather than by explicitly clicking the parent. 
Approximately 79% of trials with the traditional menu 
included waiting for timeouts to expire. Nine participants 
always waited for the timeout to expire. 

Results: Participant comments  

All participants were asked to state which menu system 
they found fastest, easiest to move through, and easiest to 
remember item locations. Eleven participants stated that 
Square Menus were fastest, eight pie menus, and four 
traditional. Thirteen participants stated that pie menus were 
easiest to move through (eight for Square and two for 
traditional), with many praising their “quick and short” 
selection gestures. Opinions were split on which best 
facilitated location memory, with fourteen for Square, 
seven for traditional, and two for pie.  

DISCUSSION AND FUTURE WORK 

Results show that the model successfully predicts subtle 
performance trends for the three menu types. Most notably, 
it predicts the reversal of the performance order between 
initial use and use after familiarisation, and it attributes the 
change to the relative efficacy of visual search and pointing 
mechanics with the three interfaces. The model was less 
successful at predicting absolute task times; however, we 
believe this effect is primarily due to differences in how 
tasks were experimentally cued, as discussed in the results 
section, rather than being a failure in the model itself.  

Square Menus: Design and Refinements 

Square Menus performed well in the experiment, and 
participants were enthusiastic about them. Several partici-
pants preferred and performed best with pie menus once 
they had gained some expertise, but Square Menus offer 
several pragmatic advantages as well – including their 
applicability at any screen location (whereas pie menus are 
awkward to render and use at window edges), their simple 
layout, and their support for broad structures (see below).  

As our focus is on modelling, our current Square Menu 
design is rudimentary, but many visual and interactive 
embellishments are possible. These include most of the 
traditional menu enhancements discussed in related work, 
such as enhanced visual identification with Ephemeral 
Adaptation [16] or improved target acquisition with 
Bubbling menus [36]. In terms of modelling, these 
enhancements would lower the a and b parameters 
associated with visual search and pointing. We are also 
keen to experiment with transparency effects to help users 
maintain awareness of items occluded by hierarchical 
menus [21].  

Pie menus: Questions about Performance 

One question raised by the empirical results is why pie 
menus did not outperform traditional, even though pie 
menus had good theoretical characteristics as described 
earlier. We believe that a difference would eventually 
appear between these two designs, but that our study did 
not provide enough blocks to reveal it. As can be seen in 
the predicted performance (Figure 7), the separation 
between pie and traditional menus only begins to occur at 
about block eight, which was the endpoint of our study. In 
addition, we note that there are likely to be different 
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Figure 9. Predictions for 36 items in a flat Square Menu 

versus a hierarchical pie menu. 

training curves for different interfaces, and development of 
expertise may simply take longer with pie menus. This has 
practical importance in that it will take longer for users to 
‘pay back’ the initial costs incurred with a pie design. 

Refinements and Extensions to the Model 

The study suggests two extensions to SDP: modelling of 
Hick-Hyman decision for composite hierarchical actions, 
and modelling of spatially unstable designs.  

First, the model currently uses separate Hick-Hyman 
decision time values at each level of the hierarchy, but it is 
likely that experienced users make a single composite 
decision about spatial selection actions. For example, a 
frequent pie menu selection might involve left, down, and 
right gestures across three levels, which with expertise 
becomes a single decision to produce a ‘�’ shape. We will 
return to this transition in future work.  

Second, we will investigate additional modelling of spatial 
stability and instability in menu designs. Square Menus 
maintain spatial stability to help users learn item locations. 
Although this may seem an obvious design decision, there 
is an important tradeoff to consider. Context sensitive 
menus, which alter the set of commands displayed 
dependent on the user’s activity, can assist novice visual 
search because all irrelevant controls are removed (the 
Microsoft Ribbon uses this approach, varying toolbar items 
based on the selected object; Square Menus instead fade 
and disable irrelevant items). Modelling performance with 
context-sensitive behaviour is complex, demanding much 
richer understanding of user tasks and system state than can 
be achieved with our model’s simple formulae governing 
search, decision, and pointing. However, the model helps 
identify the main potential benefits and costs, and 
extensions should be able to characterise this tradeoff: 
context sensitivity will sometimes aid novice performance, 
but the lack of spatial stability may make it more difficult to 
develop expertise with item locations.  

Use of the Model in Design Scenarios 

The experiment shows that the model correctly predicted a 
~12% benefit for traditional over Square Menus when 
novice, and a ~15% benefit in the opposite direction after 
familiarisation. Relatively small differences like these may 
be important for designers in particular contexts, such as 
when determining the optimal interface for dedicated use in 
a call centre. Frequently, however, designers will face 
coarser questions that cannot be easily answered without 
empiricism, and then the empiricism may mislead them. For 
example, a designer who needs to provide access to 36 
items (of six categories) might be considering a single 
Square Menu and a hierarchical pie menu. Figure 9 shows 
predictions for equally probable targets in these structures; 
initially pie menus are 40% faster than Square Menus, but 
with experience, performance quickly crosses over until 
Square Menus are ~35% faster. These predictions were 
calculated in minutes using a standard spreadsheet.  

CONCLUSIONS 

Interface designers make important choices about the 
widgets and structures used to access commands. While 
empirical evaluation is a critical tool in guiding their 
decisions, it is time consuming, and therefore limits the 
range of alternatives, layouts, and levels of user expertise 
that can be measured.  

We have applied earlier modelling work on single-level 
linear menus to hierarchies of non-linear designs such as 
pie menus. The model motivated the design of Square 
Menus, which arrange items in a grid, reducing Fitts’ Law 
pointing time. Calibrating the model also revealed new 
results that radial pointing time and movement distance 
increase linearly with the number of pie menu items. An 
experiment showed that the model accurately predicted 
important performance trends, such as a the superiority of 
Square Menus for experts, and the reversal of relative 
interface performance with expertise – novice users 
performed best with traditional menus and worst with pies; 
users with more expertise were worst with traditional. The 
strong performance of Square Menus is encouraging 
because they do not encounter some of the layout and 
window-edge problems of pie menus (although future 
studies should investigate some of the additional strengths 
of radial menus in this context, such as gestural shortcuts).  

Overall, our experiences suggest that the model’s simple 
equations can help designers quickly consider the 
performance impact of many alternative designs and 
experience levels without need for time-consuming 
implementation and experimentation.  
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